|
|
Гидрохимия - раздел геохимии, рассматривающий химический. состав естественных вод (морских,
озёрных, речных, подземных и атмосферных), свойства этих вод при различном составе
растворённых веществ, происхождение растворов, характер и режим происходящих в
них реакций.
|
Важными показателями воды с точки зрения рыбоводства являются:
- солевой состав;
- растворённый кислород;
- рН;
- аммонийный азот в связи с рН;
- нитриты и нитраты;
- БПК и органические загрязнения;
- железо и тяжёлые металлы.
1. Солевой состав воды.
Солевой состав морской воды рассмотрен в соответствующем разделе по морской воде. Однако, пресная вода также содержит соли, которые имеют значение для использования этой воды в рыбоводстве. Соли натрия и хлора, в пресной воде, значения не имеют, но соли кальция и магния важны. Прежде всего, следует отметить, что слабоминерализованная вода или вода, обессоленная обратным осмосом, не пригодна для питания УЗВ. Это связано с тем, что такая вода не обладает свойством т.н. буферности, т.е. свойством сохранять свой водородный показатель рН при добавление незначительных количеств кислоты. В УЗВ постоянно происходит процесс окисления аммонийного азота, выделяемого рыбой, в нитрат, что эквивалентно добавлению в воду небольших количеств азотной кислоты. Если вода содержит достаточное количество гидрокарбонатов и других подобных ионов, то они будут нейтрализовать эту кислоту и рН воды заметно не изменится. В случае слабоминерализованной воды рН быстро упадёт, вода станет кислой и непригодной для рыбоводства, кроме того скорость биологического окисления иона аммония в нитрат-ион начнёт замедляться.
С другой стороны, слишком жёсткая вода вредна для рыбы и создаёт повышенную нагрузку на её органы выведения (почки). Кроме того, применение слишком жесткой воды может вызвать засорение осадками солей кальция микроэкранов барабанных фильтров, вентилей и т.п. Подходящая жёсткость воды для питания УЗВ или СОВ находится в переделах 2 – 8 мг-экв./л, тогда как для питания систем, более близких к прямоточным, подходит вода и с меньшей жёсткостью. Вода с жёсткостью более 10 мг-экв./л потребует дополнительного умягчения.
2. Растворённый кислород.
В артезианской воде, используемой для питания УЗВ или СОВ растворённого кислорода нет и он вводится в неё искусственно при помощи аэрации и/или оксигенации. Однако, внутри самой УЗВ или СОВ, также как и в любой системе, использующей природную прямоточную воду (сетчатые садки, пруды, бассейны и т.п.), растворённый кислород является важнейшим показателем, обуславливающим успех производства. Для успешного выращивания практически любой рыбы (кроме рыб, способных дышать кислородом воздуха, таких как клариевые сомы) концентрация кислорода должна находится в т.н. «зоне неограниченного роста», т.е. когда рыба не затрачивает никакой дополнительной энергии на обеспечение своего тела кислородом. Для большинства видов рыб нижний предел «зоны неограниченного роста» составляет 50 – 70% от насыщения (равновесия с атмосферным воздухом), причём если для карповых рыб ближе к 50%, то для лососевых 70%. Если концентрация кислорода падает ниже, то рост рыбы замедляется, кормовой коэффициент (затраты корма на 1 кг прироста рыбы) увеличивается, и рыбоводство становится менее рентабельным. При повышении температуры выше оптимальных значений нижний предел сдвигается вверх, это связано как с уменьшением растворимости кислорода в воде, так и с увеличением его потребления при повышении температуры. Так, например, считается, что радужная форель может выдерживать до 230 С, тогда как выше, даже при близком к 100% насыщении воды растворённым кислородом, расход кислорода не компенсируется и начинается гибель. Применение оксигенации и насыщения выше 100% позволяет форели выдерживать эту и даже ещё немного более высокие температуры. С другой стороны, слишком высокие концентрации растворённого кислорода также нежелательны (см. Оксигенация)
Даже рыб, способных дышать атмосферным воздухом, например, клариевого сома, необходимо растить при минимальной концентрации растворённого кислорода, равной 2 мг/л. Это связано как с наличием т.н. «кожного дыхания», т.е. близкие к поверхности ткани снабжаются кислородом, поступающим снаружи, так и с тем, чтобы избежать каких-либо анаэробных процессов внутри рыбоводных емкостей и трубопроводов, при которых могут образовываться токсичные для рыб загрязнения воды.
3. Водородный показатель рН.
Водородный показатель – это обратный десятичный логарифм концентрации в воде водородных ионов. Полностью нейтральной воде соответствует рН = 7, если рН>7, то вода имеет щелочную среду, если рН<7, то кислую. Рыба может жить только в узком диапазоне рН в пределах 6 – 9.
Морская вода содержит много солей, в том числе и гидрокарбонаты и имеет рН 8,2 – 8,3. Благодаря высокому значению рН и большой буферности (см. выше) морская вода не подвержена «закислению» при работе в УЗВ. Но из-за её высокого рН морские гидробионты более чувствительны к иону аммония (см. ниже).
Если понятно, что высокие значения рН непригодны из-за выделения рыбой аммиака (см. ниже), то низкие значения делают воду непригодной из-за выделения рыбой свободной углекислоты СО2. В воде постоянно существует химическое равновесие
СО2+Н2СО3 o Н+ + НСО3- o 2Н+ + СО32-
Равновесие в щелочной среде смещается в правую сторону – связываются ионы водорода, а в кислой среде смещается в левую – концентрация ионов водорода повышается.
Зависимость соотношения свободной СО2 и связанной от рН отражена в таблице
значение рН |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
форма соединения |
содержание соединения в % при 25*С |
CO2 + H2CO3 |
100 |
95 |
70 |
20 |
2 |
- |
- |
- |
- |
HCO3\- |
- |
5 |
30 |
80 |
98 |
95 |
70 |
17 |
2 |
CO3\2- |
- |
- |
- |
- |
- |
5 |
30 |
83 |
98 |
Организм рыбы постоянно выделяет свободную углекислоту и при росте концентрации её в воде такое выделение осложняется. До какой-то концентрации свободной СО2 это может компенсироваться специальными механизмами организма рыбы, что потребует дополнительной энергии (и как следствие, увеличения кормового коэффициента), выше какой-то рыба начинает отравляться не выведенным из организма СО2. В сооружениях очистки УЗВ значительная часть свободной СО2 удаляется за счёт аэрации (уходит с прошедшим через воду воздухом в атмосферу). Тем не менее, часто в УЗВ, особенно высокотехнологичном, за счёт работы биофильтра рН падает. В этом случае приходится для его поддержания добавлять в воду вещества, имеющие щелочную природу (чаще всего соду NaHCO3 или известь Ca(OH)2) или поддерживать воду в постоянном контакте с известняком для поддержания рН.
4. Аммонийный азот в связи с рН.
Сам по себе ион аммония NH4+ не ядовит для рыб, как и случае с СО2, организм рыбы выделяет свободный аммиак NH3 через жабры. Выделение аммиака, как правило, прямо пропорционально количеству съеденного корма, обратно пропорционально кормовому коэффициенту и зависит сильно от состава корма.
Аммиак и ион аммония находятся в химическом равновесии
NH3 + H+ o NH4+,
которое в щелочной среде смещается влево – связывание ионов водорода, а в кислой вправо. Кроме рН сильно влияет температура. Зависимость соотношения свободного и связанного аммиака приведена в таблице.
Температура |
Содержание NH3 (в %) при значениях pH |
°С |
6,0 |
7,0 |
7,5 |
8,0 |
8,2 |
8,4 |
8,6 |
8,8 |
25 |
0,05 |
0,53 |
1,70 |
5,1 |
7,8 |
11,9 |
17,6 |
25,3 |
15 |
0,03 |
0,26 |
0,80 |
2,5 |
3,9 |
6,1 |
9,2 |
14,0 |
5 |
0,01 |
0,12 |
0,37 |
1,2 |
1,8 |
2,9 |
4,5 |
6,9 |
Концентрация свободного аммиака, с которой начинается угнетение большинства видов рыб составляет 0,05 мг/л. Исходя из этого, в типичном УЗВ-осетровнике при температуре 200 С и рН = 7,5 доля свободного аммиака от общего составит 1,2%, т.е. 0,012. Отсюда максимальная общая концентрация аммония может составлять 0,05/0,012 = 4 мг/л. Очевидно, что при большем рН или более высокой температуре меньше, да и держать постоянно вблизи критических значений нельзя, поэтому в УЗВ-осетровнике обычная концентрация общего аммония поддерживается в пределах 1 – 2 мг/л.
В морской воде при рН = 8,2 и той же температуре доля свободного аммиака составит примерно 5,8% или 0,058. В этих условиях максимальная концентрация аммония может составить 0,05/0,058 = 0,86 мг/л. Именно этот факт является причиной того, что биофильтры, созданные для работы на морской воде, всегда работают на пресной, тогда как биофильтры, созданные для работы на пресной воде, не обязательно смогут работать на морской.
5. Нитраты и нитриты.
Считается, что нитраты NO3- для рыбы нетоксичны и она может выдерживать до1000 мг/л. Также считается, что нитраты не проникают в ткани рыбы и рыба, выращенная при высоких концентрациях нитратов не накапливает их в своих тканях. В типичных УЗВ такая концентрация нитрата обычно не достигается. В первую очередь за счёт их вымывания из системы, но в некоторых случаях значительное поглощение нитратов может происходить и на биофильтре (при определенной конструкции и режиме работы биофильтра) несмотря на высокое содержание кислорода там в воде. Тем не менее, в случае, если необходимо свети к минимум (почти к нулю) водопотребление, необходимо предусматривать денитрификацию.
В отличие от нитратов, нитриты NO2- сильно токсичны для рыб. Часто нитриты называют «ядом крови», потому что они взаимодействуя с гемоглобином крови нарушают перенос кислорода к тканям. Признак длительного воздействия повышенных концентраций нитритов на рыб – изменения цвета жабр с ярко красных но почти коричневые. Предельно допустимой концентрацией нитритов считается 0,25 мг/л.
В УЗВ небольшие концентрации нитрита всегда присутствуют, это связано с двухступенчатым механизмом работы нитрифицирующей микрофлоры. При запуске биофильтров, как правило, на какой-то стадии случается «всплеск» нитритов. Это связано с тем что химическая реакция окисления аммония в нитрит имеет значительно больший энергетический выход, чем химическая реакция окисления нитрита в нитрат, поэтому микрофлора, осуществляющая первую стадию нитрификации растёт намного быстрее. В какой-то момент складывается ситуация, когда микрофлора, производящая нитриты уже выросла, а микрофлора, преобразующая нитрит в нитрат ещё нет. Бороться с первоначальным всплеском можно тем, чтобы нагрузка на биофильтр росла медленно, желательно, вместе с рыбой.
Нитриты легко окисляются в нитраты озоном, по этой причине озонирование является надёжным методом снижения концентрации нитритов.
5. БПК и органические загрязнения.
БПК – биологическое потребление кислорода. Обычно применяется показатель БПК5 – биологическое потребление кислорода за 5 суток. Этот показатель показывает, сколько кислорода нужно для биологического окисления органических загрязнений воды. Т.о. БПК показывает не просто сколько органических загрязнений содержится в воде, но и насколько они легко биохимически разрушаемы. Само по себе БПК воды никак не влияет на рыбоводство, за исключением того что может потребоваться несколько больше кислорода, так как некоторая (незначительная) его часть может пойти на
окисление загрязнений, а не только на дыхание рыб.
Некоторые органические загрязнения могут быть токсичными для рыб. Это в основном те, которые образуются при анаэробном (в отсутствии кислорода) разложении органических веществ и осадков. Такие процессы могут происходить как в биофильтре так и в самих рыбоводных бассейнах, если их конструкция не обеспечивает вымывание осадков и/или если проток воды через них слишком низкая.
7. Железо и тяжёлые металлы.
Железо, содержащее в артезианской воде, иногда не позволяет использовать её для рыбоводных целей. Для подпитки УЗВ с незначительной подменой воды достаточно чтобы концентрация общего железа не превышала 2-3 мг/л. Для выращивания форели требования более жёсткие: железа не должно быть более 0,5 мг/л. Для приготовления морской воды железа вообще не должно быть более 0,1 мг/л. Особенно вредно оказывается для рыбоводства закисное железо, которое при контакте с растворённым в воде кислородом быстро превращается в окисное, которое начинает медленно коагулировать и выпадать в осадок, забивая рыбе, особенно мальку, жабры и затрудняя газообменные процессы. Помимо железа в природных водах иногда встречается марганец. В общем случае он ведёт себя подобно железу, т.е. также выпадает в осадок в нейтральной среде при контакте с растворённым в воде кислородом. Но к концентрации марганца требования жестче чем к железу, вода для рыбоводства не должна содержать его выше 0,3 мг/л.
Наличие в воде других металлов, таких как медь, хром, никель и т.п.не допускается, потому что такие металлы могут накапливаться в тканях тела рыбы и делать её фактически несъедобной. Такие металлы редко встречаются в природных водах, если они присутствуют, то чаще всего они вызваны антропогенным загрязнением воды.
|
|
|
|
|
|
|